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Plan for the talk

– Big picture, few details (so please let me know if you’d like
elaboration)

– Outline of the talk
1. Introducing the logics
2. Stating the problems
3. Outlining the strategy
4. Solving the problems using the strategy

– Overarching theme: a study of modal information logics
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Defining (the basic) modal information logics (MILs)

Definition (language and semantics)
The language is given by

φ ::= ⊥ | p | ¬φ | φ ∨ ψ | ⟨sup⟩φψ,

and the semantics of ‘⟨sup⟩’ is:

w ⊩ ⟨sup⟩φψ iff ∃u, v(u ⊩ φ; v ⊩ ψ;

w = sup{u, v})

Example

w ⊩ ⟨sup⟩pq

u ⊩ p v ⊩ q

Definition (frames and logics)
Three classes of frames (W,≤), namely those where

(Pre) (W,≤) is a preorder (refl., tr.);
(Pos) (W,≤) is a poset (anti-sym. preorder); and
(Sem) (W,≤) is a join-semilattice (poset w. all bin. joins)

Resulting in the logics MILPre,MILPos,MILSem, respectively.

Appetizer: Let’s show that MILPre ⊆ MILPos ⊊ MILSem. *see blackboard* 3
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Motivation

Why MILs?

– Connect with other logics (e.g., truthmaker logics).
– Introduced to model a theory of information (by van Benthem (1996)).
– Modestly extend S4 [MILPre,MILPos]. *see blackboard*

What in particular?

Guided by two central problems (posed in van Benthem (2017, 2019)), namely

(A) axiomatizing MILPre and MILPos; and
(D) proving (un)decidability.
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Initial study (MILPre and MILPos)

Proposition
MILs lack the finite model property (FMP) w.r.t. their classes of
definition. *see blackboard*

How we solve (A), and then (D) using (A):

(1) We axiomatize MILPre (and deduce MILPre = MILPos).
(2) Use the axiomatization to find another class of structures C for

which Log(C) = MILPre.
(3) Prove that on C we do have the FMP and deduce decidability.
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(1): axiomatizing MILPre

Axiomatization (soundness and completeness)
MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → ⟨sup⟩pq
(4) PPp→ Pp

(Co.) ⟨sup⟩pq → ⟨sup⟩qp
(Dk.) (p ∧ ⟨sup⟩qr) → ⟨sup⟩pq

Proof idea
Soundness *see blackboard*
For completeness, let Γ ⊇ Γ0 be an MCS extending some consistent Γ0. We
construct a satisfying model using the step-by-step method (but first, why
step-by-step? *see blackboard*).
(Base) Singleton frame F0 := ({x0}, {(x0, x0)}) and ‘labeling’ l0(x0) = Γ.
(Ind) Suppose (Fn, ln) has been constructed.

– If x ∈ Fn and ¬⟨sup⟩ψψ′ ∈ ln(x) but x = supn{y, z} s.t.
ψ ∈ ln(y), ψ′ ∈ ln(z), coherently extend to (Fn+1, ln+1) ⊇ (Fn, ln) so
that x ̸= supn+1{y, z}.
– Similarly, for ⟨sup⟩χχ′ ∈ ln(x).
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Completeness of MILPre (cont.)

Example
x

{⟨sup⟩χ0χ
′
0, ⟨sup⟩χ1χ

′
1} ⊆ l(x)

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

⟨sup⟩-repair⇝⟨sup⟩-repair⇝

¬⟨sup⟩-repair⇝

x

y

χ0 ∈ l(y)

z

χ′
0 ∈ l(z)

z′

χ′
1 ∈ l(z′)

y′

χ1 ∈ l(y′)

x

¬⟨sup⟩ψψ′ ∈ l(x)

y z

ψ ∈ l(z)

z′

ψ′ ∈ l(z′)

y′

d
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(1): axiomatizing MILPre

Axiomatization (soundness and completeness)
MILPre is (sound and complete w.r.t.) the least normal modal logic with axioms:
(Re.) p ∧ q → ⟨sup⟩pq
(4) PPp→ Pp

(Co.) ⟨sup⟩pq → ⟨sup⟩qp
(Dk.) (p ∧ ⟨sup⟩qr) → ⟨sup⟩pq

About the proof
Soundness: routine.
Completeness: step-by-step method.

Corollary
As a corollary we get that MILPre = MILPos.
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(2) and (3): ‘decidability via completeness’

(2) Find another class C for which Log(C) = MILPre:
(i) Nothing in the ax. of MILPre necessitating ‘⟨sup⟩’ to be interpreted

using a supremum relation.
(ii) Canon. re-interpretation:

C := {(W,C) | (W,C) ⊩ (Re.) ∧ (Co.) ∧ (4) ∧ (Dk.)},

where C ⊆W 3 is an arbitrary relation.
(iii) Then Log(C) = MILPre. *see blackboard*

(3) Decidability through FMP on C:
(i) On C, we get the FMP through filtration.
(ii) And this implies decidability.

Thus, we have solved both (A) and (D).

Gen. takeaway: When dealing with ‘semantically introduced’ logics, not
having the FMP (w.r.t. the class of definition) might not be very telling.

9
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Can we generalize these techniques?
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MILs with informational implication ‘\’

(Natural) extensions of MILPre and MILPos [and S4] are obtained by
adding an informational implication ‘\’.

Definition
The language is given by adding ‘\’ with semantics:

v ⊩ φ\ψ iff ∀u,w([u ⊩ φ,w = sup{u, v}] ⇒ w ⊩ ψ)

We denote the resulting logics as MIL\-Pre,MIL\-Pos, respectively.

Note that ‘⟨sup⟩’ and ‘\’ are “inverses”; and ‘F ’ is expressible: we extend
temporal S4. *see blackboard*
The problems now become

(A\) axiomatizing MIL\-Pre and MIL\-Pos; and
(D\) proving (un)decidability.

The same (1)-(2)-(3) structure is used as before, but now we

(1’) axiomatize the logic Log\(C);
(2’) through representation show that Log\(C) = MIL\-Pre = MIL\-Pos; and
(3) get decidability through FMP on C.
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Selected points from proof of (A\), (D\) through (1’), (2’), (3’)

(1’) axiomatizing Log\(C) (soundness and completeness)
Log\(C) is (sound and complete w.r.t.) the least set of L\-M -formulas that (i) is
closed under the axioms and rules for MILPre; (ii) contains the K-axioms for \;
(iii) contains the axioms
(I1) ⟨sup⟩p(p\q) → q, and
(I2) p→ q\(⟨sup⟩pq);
and (iv) is closed under the rule
(N\) if ⊢\-Pre φ, then ⊢\-Pre ψ\φ.

About the proof
Soundness: routine; completeness: standard.

Lambek Calculus of suprema on preorders/posets
This logic (which = MIL\-Pre = MIL\-Pos) = NL-CL+ {(Re.), (4), (Co.), (Dk.)},
where NL-CL is the Lambek Calculus extended with CL from, e.g., Buszkowski
(2021).

12



Selected points from proof of (A\), (D\) through (1’), (2’), (3’)

(1’) axiomatizing Log\(C) (soundness and completeness)
Log\(C) is (sound and complete w.r.t.) the least set of L\-M -formulas that (i) is
closed under the axioms and rules for MILPre; (ii) contains the K-axioms for \;
(iii) contains the axioms
(I1) ⟨sup⟩p(p\q) → q, and
(I2) p→ q\(⟨sup⟩pq);
and (iv) is closed under the rule
(N\) if ⊢\-Pre φ, then ⊢\-Pre ψ\φ.

About the proof
Soundness: routine; completeness: standard.

Lambek Calculus of suprema on preorders/posets
This logic (which = MIL\-Pre = MIL\-Pos) = NL-CL+ {(Re.), (4), (Co.), (Dk.)},
where NL-CL is the Lambek Calculus extended with CL from, e.g., Buszkowski
(2021).

12



MILs of minimal upper bounds

Question: What happens if we extend S4 with vocabulary for
minimal instead of least upper bounds?

Answer: Nothing. We get the exact same logics:

MILPre = MILPos = MILMinPre = MILMinPos

and even
MIL\-Pre = MIL\-Pos = MILMin\-Pre = MILMin\-Pos

This concludes and summarizes our study of MILs on preorders and
posets.
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How about join-semilattices (i.e., MILSem)?
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Axiomatizing MILSem

Three ways to completeness (some intuitions for our proof):

Henkin (e.g.,K)

M

Standard step-by-step (e.g., MILPre)

M0 M1 M2

· · ·
Mω

‘Indeterministic step-by-step’ (MILSem)

M0

M01

...
...

M0n0

M011...
...
M01n01

M0n01...
...
M0n0n0n0

· · ·

· · ·

· · ·

· · ·

· · ·π0 π1 π2

Model constr.:

Axioms:
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Conclusion and future work

What we have done:

• Surveyed the landscape of MILs on preorders and posets.
• Made crossings with the Lambek Calculus and truthmaker
logics.1

• Axiomatized MILSem.

What (might) come next:

• Proving (un)decidability of MILSem and solving the ancillary
problems of fin. ax. and the FMP w.r.t. CSem.

• Further exploring how MILs connect to other logics.

1See the thesis for this, including proofs of decidability (and compactness) of a family
of truthmaker logics.
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Thank you!
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On ‘\’ and ‘⟨sup⟩’

Example
Note how ‘⟨sup⟩’ and ‘\’ are ‘inverses’:

⟨sup⟩p(p\q) → q

and
p → q\(⟨sup⟩pq)

are valid.
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